CS Decomposition Based Bayesian Subspace Estimation
نویسندگان
چکیده
منابع مشابه
Bayesian Subspace Estimation Using Sparse Promoting Prior
Hyperspectral sensors record the light intensity beyond the visible spectra in hundreds of narrow contiguous bands. Images are characterized by a high spectral resolution but a low spatial precision due to sensors constraints. A crucial step called unmixing consists of decomposing each pixel as a combination of pure spectra, called endmembers. Endmembers act as fingerprints, improving the abili...
متن کاملA Bayesian approach to geometric subspace estimation
This paper presents a geometric approach to estimating subspaces as elements of complex Grassmann-manifold, with each subspace represented by its unique, complex projection matrix. Variation between the subspaces is modeled by rotating their projection matrices via the action of unitary matrices [elements of the unitary group U( )]. Subspace estimation or tracking then corresponds to inferences...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملSubspace Based Estimation of the Signal
The Signal-to-Interference ratio (SIR) has been highlighted in the literature to be a most eecient criterion for several methods aiming at reducing the eeects of cochannel interference, e.g. diversity reception, dynamic channel allocation and power control. In this paper we address the problem on how to obtain fast and accurate measurements of this parameter in a practical context. We develop a...
متن کاملOn subspace based sinusoidal frequency estimation
Subspace based methods for frequency estimation rely on a lowrank system model that is obtained by collecting the observed scalar valued data samples into vectors. Estimators such as MUSIC and ESPRIT have for some time been applied to this vector model. Also, a statistically attractive Markov-like procedure [1] for this class of methods has been proposed in the literature. Herein, the Markov es...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2012
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2012.2197619